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SUMMARY

The purpose of this report is to summarize the state of knowledge and outline the planned

work in divergence-based/neural-networks approach to the problem of passive ranging de-

rived from optical flow. Work in this and closely related areas is reviewed in order to provide

the necessary background for further developments. New ideas about devising a monocu-

lax passive-ranging system are then introduced. It is shown that image-plan divergence is

independent of image-plan location with respect to the focus of expansion and of camera

maneuvers because it directly measures object's expansion which, in turn, is related to the

time-to-collision. Thus, a divergence-based method has the potential of providing a reliable

range complementing other monocular passive-ranging methods which encounter difficulties

in image areas close to the focus of expansion. Image-plan divergence can be thought of as

some spatial/temporal pattern. A neural network realization has been chosen for this task

because neural networks have generally performed well in various other pattern recognition

applications. The main goal of this work is to teach a neural network to derive divergence

from the imagery.

ACRONYMS USED IN TEXT

BP

FOE

FOV

FLIR

FT

INU

LOS

NNet

OF

PCA

PSF

SNR

TBD

TTC

3-D

- Back-Propagation

- Focus of Expansion

- Field of View

- Forward-Looking Infra-Red

- Fourier Transform

- Inertial Navigation Unit

- Line of Sight

- Neural Network

- Optical Flow

- Principal-Component-Analysis

- Point-Spread-Function

- Signal-to-Noise Ratio

- Track Before Detect

- Time To Collision

- 3-Dimensional



1 INTRODUCTION

Passive ranging is an area of considerable interest for applications such as obstacle avoidance

for rotorcraft nap-of-the-earth navigation and spacecraft landing. Two main passive-ranging

methods can potentially be employed for this purpose; one based on motion and the resulting

image-plane optical flow (OF), and the other based on stationary stereo. Both methods can

be thought of as special cases of a more general triangulation method known in the literature

as "bearing-only" or "direction-of-arrival" (e.g. [1, 2, 3, 4]). Although this paper concentrates

on monocular OF-based ranging, it is believed that most of the ideas also apply to stereo--

either stationary or combined with motion (see [5, 6]).

The motion of an imaging sensor causes each imaged point of the scene to correspond-

ingly describe a time trajectory on the image plane. The trajectories of all imaged points

are reminiscent of a flow (e.g., of liquid) which may explain the term "optical flow." The

OF thus consists of the sequence of angular (or projectional) measurements collected from

different locations along the vehicle's flight trajectory with respect to all points in the field of

view (FOV). A forward-looking imaging sensor, such as a TV camera or a FLIR, is typically

used to record the optical flow. The various methods of extracting depth information from

the OF can be categorized on several levels of properties. These levels are outlined in the

following with the purpose of providing a familiar context for the present work.

. Passive ranging methods can be divided into three distinct classes: object-based,

feature-based, and field-based. Object-based approaches make use of assumptions

which are pertinent to objects, e.g., that all points of an object share the same depth

and gray level, and that an object is enclosed by some contour. Their main drawback

is the need to define or identify objects between successive frames. Feature-based ap-

proaches take advantage of "interest points" in the scene such as edges, corners, or any

abrupt change in gray levels. No association is necessary between interest points and

actual objects. Field-based approaches regard the scene as a continuum, that is, they

base ranging on local information alone. They, thus, do not require any reference to,

or identification of objects.

. Categorization can be made based on the assumptions inherent to the method--

irrespective, or in addition, to whether they are feature-, object- or field-based. As-

sumptions, explicit or implicit, are always made with every passive ranging method.

All methods rely on the basic underlying assumption that the scene and its illumination

sources are temporally constant (see [7]). Object-based methods necessarily assume

gray-level or/and texture constancy within each object as well as that all points be

longing to the same object share the same range.

3. Passive-ranging methods can be divided into classes according to whether they work

recursively or in batch, i.e., they work in a filtering or smoothing mode. Calculating
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optical flow is akin to trajectory estimation for every point in the scene. As such,

trajectory estimation can be performed using either a detect-then-track method, e.g.,

Kalman filtering--such as in [8, 9], or using a track-before-detect (TBD) method, e.g.,

Dynamic Programming---such as in [10, 11, 12]. The probability-of-detection divided

by the probability-of-false-alarm is directly related to the signal-to-noise (SNR) ratio.

of the data. In the case of detect-then-track methods the SNR is that of the first

measurement (which oftentimes is obtained from the first and second images), whereas

with TBD methods, the SNR is that of the combined imagery set (which is typically in

the order of 15 images). Another way to say the same is that detect-then-track methods

use a very short integration time for the first detection, whereas TBD methods use a

much longer integration time for detection (and tracking). When the data are noisy,

as is always the case, the TBD approach is obviously advantageous.

Lastly, categorization can be made based on the type of information each particular

method makes use of. The OF at any given point consists of two kinds of motion: a

translational motion and a local divergence or expansion. Most methods make use of

the motion away from the focus of expansion (FOE) of the features, objects, or some

local surroundings--thus ignoring the other part of the OF information. In this work

I will discuss methods of extracting depth information from the divergence of the OF;

this can be done on a field or object basis. The divergence, which is by definition a

local, or field operation, is independent of image-plane location and vehicle's maneuvers

because it measures the local expansion at any given point. Usually, for points far from

the FOE, the translational motion is much more pronounced than the divergence, so

that ignoring the divergence does not incur too much of a loss. However, in areas close

to the FOE, the opposite is true; the translational speeds in the image plane approach

zero, and the divergence information is left as the only source to be utilized for the

derivation of depth.

To summarize the subject of categorization, let us refer to some familiar passive ranging

methods. The work of Sridhar, Phatak, and Cheng in [8, 9] and Sridhar, Suorsa and Hussien

in [13] is on a feature-based method; it tracks "points of interest" through spatial correlation

and Kalman filtering of their image-plane trajectories. It makes all the standard assumptions

already mentioned above, it is recursive, or a detect-then-track method, and it uses the

translational part of the OF information alone--specifically it depends on the approximation

that, for a short while, the divergence is zero.

The works of Watson and Ahumada [14], Lowell and Wechsler [15], Barniv [16, 17l, and

Kendall and Jacobi [18] is in the area of "Velocity Filtering" or 3-D Fourier-Transform (FT)

filtering. It is a field-based method, it makes standard assumptions, it is a TBD method, i.e.,

it uses all the imagery information in batch to feed a bank of 3-D filters, and it only uses the

translational OF information--although without any implicit or explicit assumption about

the divergence information.



The works of Menon and Sridhar [19], and Chatterji, Menon, and Sridhar [20, 21, 22]
are closely related to the initial work of Horn and Schunckin [7]. They make useof the
"Correspondencehypothesis," meaning that, between two temporally-close images, each
can be expressedin terms of a Taylor-series approximation of the other which leads to

an expression for the depth. This is a field-based method which makes all the standard

assumptions. In its current form it is a detect-then-track method which initializes on the

first pair of images, and it makes no use of the OF divergence information.

Changing texture and size

Texture alone Size alone

Figure 1. Texture and size cues.

The works of Longuet-Higgins and Prazdny [23], Prazdny [24, 25], Koenderink [261,

Koenderink and van Doom [27, 28], and Nelson and Aloimonos [29] mainly make use of

the divergence information in the OF. They are field-based, use standard assumptions, and

they are detect-then-track methods. An interesting extension to these works was recently

reported by Ringach and Baram in [30]. Although it is field-based, it explicitly assumes,

in addition to the standard assumptions, that the scene is composed of objects and derives

the average, or global, divergence for all objects without the need to actually delineate or

identify them in any way. It is, in some sense, a TBD method, and it exclusively uses only the

divergence information of the OF. The local- and global-divergence methods are intended for

different kinds of objects as exemplified in figure 1. The local-divergence method is intended

for textured objects with no well-defined edges, whereas the global-divergence method is

intended for objects with little or no texture but having well-defined edges.

With the above background, it is quite clear that, currently, no single method can do

the job of passive ranging satisfactorily. However, I will summarize what, in my opinion, are

the preferred attributes of a general candidate--keeping in mind that it is quite legitimate

to combine more than one approach in a complementmT way:

(1) For the simple reason that most scenes contain natural (diffused) and man-made objects,

it should probably be a combination of field- feature-, and object-based methods.

(2) It should assume, in addition to the standard assumptions, as much as possible about

4



the scenery--akin to taking into accounta priori information.
(3) It should be a TBD algorithm.
(4) It shoulduseall the availableOF information, i.e., translation and divergence informa-

tion.

For limited or specialized applications, one may still do well with algorithms that do not

satisfy all of the above specifications.

My approach in this work is based on the above general guidelines. It consists of adapting

and extending the above-mentioned divergence-based algorithms so that they can help other

algorithms (such as those reported in [8, 9]) deal with the problematic FOE area where

translational motions are very small. Divergence, which is by definition a local attribute, is

reliable in areas of appreciable texture. In areas of little texture, the global divergence can

provide a robust performance for objects which exhibit distinct edges. Since such objects

(as man-made) tend to have poor texture and vice versa, these two divergence methods

appear to be complementary. Thus this paper outlines the current work on developing and

combining the above two ideas. The (local) divergence, which is a field-based method, is to

be calculated by a Neural Network (NNet); the NNet will be trained to derive divergence by

examples. The global divergence, which can be thought of as being an object-based method,

is derived by another NNet which emulates a biological model of cells found in the vision

system of monkeys [31].

The organization of this report is as follows. Section 2 contains a general introduction

to explain the relationship between divergence and optical flow; it summarizes results per-

taining to utilizing the (local) divergence for depth derivation. Section 3 summarizes results

pertaining to global divergence. The idea of deriving divergence using a NNet is introduced

in section 4, along with the suggested method of combining the local and global divergence

algorithms. Section 5 serves to summarize this paper.

I would like to acknowledge Dr. Bassam Hussien for his help throughout this work and

Drs. Dallas Denery and Banavar Sridhar for their constructive criticism of this report.

2 THE RELATION BETWEEN DIVERGENCE

AND OPTICAL FLOW

Basic equations for the divergence in the image plane are derived in this section. This

derivation is based on prior work described in [23] to [30].

It is convenient to think for a moment of imaging the outside scene onto a spherical

surface because such projections are identical irrespective of the camera-axis direction. In

fact, with such geometry, the camera axis is defined to coincide with the line-of-sight (LOS)
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Image sphere

X

Figure 2. The geometry of projection onto the image plane.

from the center of the sphere to any imaged point, as seen in figure 2. Another motivation for

regarding the image plane as a sphere is that this geometry is similar to that of imaging the

world by a lens onto a spherical retina, e.g., in the human eye. Let us define the coordinate

system of the spherical camera to have its origin at the sphere's center and its Z axis to pass

through the imaged point P of some object. Consider the projection of P onto the sphere

at point p. At that point define the origin of an (x, y) plane tangent to the sphere which is

called local projective image plane (image plane, for short); this image plane approximates

the sphere at the point of tangency, p. Let us assume that P is found on a smooth surface

described by some function z = f(x, y) so that its gradient Vz = (zx, zu) exists. The

distance of any point on that surface from the sphere's center can then be approximated in

the neighborhood of P by

z zo + Vz. (z,y) (1)

The relative motion of the camera with respect to the scene is defined by its translational

velocity V _ (Vx, Vy, Vz) and rotational velocity f_ _ (f_x,f_,f_z). It is convenient to

normalize V by zo and denote (Vx, V_, V,) a= (Vx, Vy, Vz)/Zo.

The motion of the camera causes the stationary point P and its surroundings to describe

what is called a retinal velocity field around p on the image plane. Denoting the retinal

velocity vector at p by v(p) _ (u, v) [p (to correspond with the (x, y) axes) and their partial

derivatives by ux, u_, v,, v_, the following equations hold (see [23]).

= -Y. - v = +

u, = V, + y.z. , vv = v, + v,z 
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% (2)

Using the above equations, the divergence at p (call it div(p)) can be expressed as

div(p) = V. v(p) = ux + v_ = 2V_ + Vz-(V_, V_) (3)

To interpret the above equation, suppose that the camera only moves in the Z direction. In

that case V_ - V v = 0 and V. v(p) = 2V_ = 2Vz/zo, that is, div(p) is twice the reciprocal

of the time-to-collision (TTC) of P with the camera's center. Because of this interpretation,

div(p) was termed "immediacy" in [26] and other papers, that is, it measures the immediacy

of an imminent collision. In the opposite case, when (Vx, V_) :_ (0, 0) and V_ = 0, there

can still be relative depth changes between the camera and the patch because it is generally

slanted. In other words, div(p) will still have the same interpretation as before, except that

the imminent collision is going to be with some point on the plane which is tangent to the

patch at P and not with P itself. To clarify this point, let us think of a helicopter that

approaches landing and is currently pointed at some marker P on the airstrip. If it continues

flying on the initial LOS towards that marker (V_ = V_ = 0), it will collide with it at time

1/Vz. If it reduces its forward speed to zero (V_ = 0) but develops a downward motion V_ (in

the direction of -Y) it will collide with the runway down below at time [1/V_ [. In this case

the runway is the plane tangent to the surface of the "object" at the initial point P. We thus

see that both terms of the immediacy have a valid physical interpretation. Notice that the

rotational velocities do not even appear in div(p). This is a very important (and well-known)

observation because it says that the TTC information is wholly contained in the imagery; no

additional information is needed (such as from the Inertial Navigation Unit (INU)). However,

with INU measurements available, the translational component of the image-plane motion

can also be used as an additional source of depth information.

Nelson and Aloimonos describe in [29] a straightforward mechanism for evaluating the

divergence from a sequence of images. I have no intention of describing the details of this

algorithm here except to point out that (a) it is fairly complicated, (b) it is highly non-

linear, and (c) it requires massive amounts of calculations. In terms of performance, it

appears to produce expected results and provide a hazard map for a robot arm that moves a

camera through a three-dimensional environment containing various obstacles. A candidate

trainable NNet is suggested in section 4 as a replacement for this algorithm.

3 THE GLOBAL DIVERGENCE

In this section, I summarize theory and results obtained with an algorithm that was developed

by Ringach and Baram in [30]. The basic approach is to deal with the average divergence over

the area of each object instead of with the divergence at each pixel. The average divergence,
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x(R), for an object whose projection onto the image plane is R--assuming for the moment

that its boundary OR is well defined--can be written as

x(R) Z_ _R)/R div(p) ds= _R fo V.v(p)ds= 1 fo=A A ) R A(R----) R v(p)'ndl (4)

where A(R) is the object area, dl is the elemental length along OR, and the equality is based

on the divergence theorem. In other words, the average divergence equals the line integral of

the normal component of the velocity vector at the edge along the edge of each object. This

entails the advantage of having to integrate v instead of having to differentiate it. Also, the

line integral can easily be shown (see [30]) to have an intuitive interpretation, that is,

1 dA(R) (5)
x(R) = A(R) dt

i.e., the immediacy equals the temporal rate of change of the normalized object area.

Another important innovation in Ringach and Baram's work is in the way the line in-

tegral expression for the immediacy is evaluated. They have shown in [30] that a diffusion

process, initialized by the normal velocities at all image pixels, would converge to the imme-

diacy values for all closed objects. The procedure can be described by the following steps:

(a) calculate the velocities normal to the local edge for all pixels, (b) load a blank image of

the same size with positive and negative velocity values in front and behind each pixel re-

spectively according to the direction of the normal velocity vector at that pixel, and (c) start

a diffusion process from these initial conditions and run it to convergence.

Pdngach and Baram's work was largely motivated by advances in the understanding of

visual processing in humans and primates. For example, experiments with humans suggest

the existence of divergence (looming) detectors in the human visual system [32, 33, 34] as

well as vorttcity detectors [34, 35, 36]. This is why they naturally used a NNet to perform

the operations required by the above equations in agreement with the assumed biological

models.

A block diagram of the global divergence algorithm is shown in figure 3. The stream

of images I(x,y,t) enters a block called Motion Layer (or image) where the motion-vector

components normal to the local edge are calculated for all points in the scene. In the

Segmentation layer, detection is performed at each pixel for moving edges having an edge

amplitude above some threshold and speed above some other threshold (see fig. 4). No

attempt is made to actually delineate or define objects. Also, in this layer, positive and

negative "charges" are deposited in the front and rear vicinity of each detected pixel as

shown in figure 5. In the diffusion layer a NNet of locally connected neurons is used to

perform the diffusion. For an ideally closed object, the diffusion process settles on some final

value which is, of course, common to the whole interior of the object and represents the

desired immediacy. This algorithm can be considered to be TBD because all the operations
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l(x,y,t)

8

I

(

Segmntation Layer

x(R)

Diffusion Layer

Figure 3. Block diagram of the global divergence algorithm.

e

Figure 4. Finding normal velocities.

negative signals induced
in front of moving edge

positive signals Induced
behind moving edge

Figure 5. Initializing the diffusion process.
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involved evolvewith time. In particular, if the diffusion processis not allowed to converge

between frames, its value can be made to evolve and converge over as many frames as desired.

4 DIVERGENCE DERIVATION USING A

TRAINABLE NEURAL NETWORK

In this section I explain the new idea of training an NNet to derive divergence for textured

objects. The motivation for using an NNet for this task comes from the works quoted above.

It is seen from equation (3) that div(p) = u= + v_, which is just a summation of the spatial

partial derivatives of the image-plane velocity-vector components. This means that the time

and spatial first derivatives are calculable from the imagery, and no other information is

necessary. The minimum imagery size that would contain this information consists of two

consecutive images of the 2 x 2 neighborhood of the subject pixel.

Frames:

n-2

n-1

z

Hidden layer

Input layer

Figure 6. Trainable NNet for divergence estimation.

In figure 6 we see an example of a somewhat larger data source for an NNet--that is,

3 frames of size 3 x 3 pixels. Thus, the NNet receives 27 inputs of gray level, and its job is to

learn to convert these to depth or, given the vehicle's speed, to TTC. A standard NNet with

a single hidden layer with a still-undetermined number of neurons is shown. The output

layer consists of a single neuron whose output is the predicted depth. All neurons are shown

to have a sigmoidal non-linearity at their output although this is of little consequence for

the output neuron. Notice that this algorithm can also be considered TBD---especially if we

eventually will use many more frames than just the three shown.
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A few thousand samplesare used in the learning stage, where each sample consists
of 27 continuousgray-levelvaluesand a single "ground-truth" TTC value, which serves for

reference. After each presentation of a sample, the network's predicted TTC is compared with

the reference TTC. The error is used to correct all the NNet weights using Gradient Descent

towards the local minimum. The standard back-propagation (BP) technique is nominally

used to update the weights (e.g. see [37, 38]). The BP performance will be compared with

those of other learning techniques. Once the NNet has converged satisfactorily in the learning

phase, it is tested with another independent set of samples that have not been used in

training. If the average error on that never-seen-before set is low, i.e., comparable with the

error in the training phase, then one can declare the NNet to perform well.

Although the basic idea is simple, the issues associated with teaching this NNet (or, for

that matter, any NNet) what it is supposed to learn are not so. Some of these issues are

listed in the following. Readers familiar with NNets applications will notice that the issues

of interest are quite generic but the details are specific to our particular problem.

4.1 Input-Data Dimensionality

The crucial issue is the form and dimensionality of the input data. Under this general subject

come several subtopics:

o

o

o

Size of raw input data

A nominal input vector of size 27 has been chosen as shown in figure 6. However, the

necessary or most effective size to be used is still an open parameter. Its value will

be determined by several factors, such as the spatial/temporal power spectrum of the

scene, the Point-Spread-Function (PSF) of the camera optics, and the required angular

coverage (the FOV) around the FOE.

Gray-levels scaling

A little thought makes it clear that we do not want the absolute gray-level values of

a sample to affect the learned divergence. Just imagine the same scene under two

different illumim: _-ions. We certainly do not want the NNet to learn anything relating

to illumination since it is irrelevant to the derivation of divergence. Now the question

is how to normalize the gray levels: by dynamic range, by the average, by some other

statistics, etc. The first method was chosen arbitrarily for lack of any better reason to

choose another.

Preprocessing

The question is whether to use the raw gray-levels, to use their spatial or temporal dif-

ferences of some order, or, in general, to use another form of representation altogether.
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The key consideration is that preprocessingshould only preserve the relevant infor-

mation. By doing so, preprocessing should result in reduced input-vector dimension-

ality. We know, for example, that image-plane rotation- and/or translation-invariant

transformations should discard irrelevant information while preserving the divergence

information. In general, one can think of an image in a sequence of images as (approx:.

imately) being derived from an affine transformation performed on any of the others.

This means that there are, at most, six transformation parameters (four in the multi-

plying 2 x 2 matrix and two to account for translation) that relate one image to another.

Out of these six, only two are related to expansion--lateral and vertical--in the image

plane. Preprocessing may thus take the form of a known translation-invariant transfor-

mation, such as a Fourier Transform (FT), and/or a rotation-invariant transformation,

such as Cartesian-to-Polar Transformation followed by an FT.

4. Data compression

Reducing dimensionality is akin to data compression. In principle, most types of natu-

ral data of any source are highly redundant. In our case we know that adjacent pixels--

either spatially or temporally--are highly correlated. One straightforward approach to

imagery compression could be through using the standard principal component analysis

(PCA) (e.g. see [39]). This is performed by evaluating the average covariance matrix of

the sample vectors (e.g., of size 27 x 27), and projecting all raw vectors onto the n (to

be determined) largest eigenvectors of this matrix. The value of n is chosen such that

this process transforms the 27-long raw vectors into shorter ones (of length n) while

preserving the essential information. Notice that the standard FT is just another form

of PCA where the components are the FT values for all frequencies. Keeping only

the n "relevant" components--which, most probably, will amount to some form of

high-pass-filtering--will result in a similar compression ratio as with the basic PCA.

Another method to be considered for data compression is to use a standard NNet (in

front of the main one) with 27 inputs, 27 outputs, and n hidden-layer elements. The

idea is to teach the NNet an effective compression by training it to minimize the mean-

square error between inputs and outputs. The compression ratio is 27/n, and the goal

is to find the minimum n that still yields an acceptable average error. It has been

shown (e.g.[40, 41]) that an NNet with a single hidden layer essentially carries out a

principal component analysis. The advantage of doing this analysis with an NNet as

opposed to PCA is that the NNet can learn and adapt to new examples on-line in a

robust way.

Yet another method of image compression to be considered is through the use of fractal

techniques. Such techniques can especially be effective in reducing texture information

by factors as high as 10,000, e.g., see [42, 43, 44]. A compression factor of such

magnitude may enable one to work with much larger fractions of the imagery--say,

20 x 20 instead of 3 × 3 pixels--and, as a result, achieve much better accuracies.
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5. Coding
Using a continuous gray-level input (after preprocessing) does not involve any coding.

However, coding techniques have proven essential in many other applications of NNets.

This issue will thus be left open at this point.

4.2 The Hidden Layers

The second main issue concerns the hidden layer or layers. Under this subject let us examine

the following subtopics.

.

.

.

Number of hidden layers

In principle, an NNet having a single hidden layer of some unspecified size is capable

of performing any desired general mapping [45]. However, there might be advantages

in using more than a single hidden layer in terms of internal data representation and

overall number of weights. One can think, for example, of a multilayer NNet designed to

perform some pre-assigned data transformations (or mappings). The first hidden layer

may be assigned to perform a principal component analysis. The second hidden layer

may be assigned to perform translation- and rotation-invariant transformations, i.e.,

map the imagery into a new space in which only expansion information is represented.

An output layer would then be responsible for the final mapping into TTC.

Number of hidden-layer units

A very important question, when using one or several hidden layers, is how many

units are required in each layer. There is no formulative answer to this question,

but there are some clues in the form of Widrow's and Cover's bounds as in [37] and

[46] respectively. Accordingly, we know that, for good generalization, the number of

samples in the training set should be around 10 times the total number of weights in all

layers. Obviously, the choice of hidden-layer neuron number is quite flexible (which is

one of the manifestations of NNet's robustness in general). In practice, these numbers

can be determined as part of the learning process, where the NNet has the option of

adding or discarding superfluous weights and/or neurons based on their effect on the

average error. One way of doing that is to add penalty terms to the cost-function such

that they push all weights towards zero. Those weights that give in and decay towards

zero get discarded, so that the NNet essentially learns its own size.

Total automation of learning

Another approach to the choice of the NNet size is to automate the whole learning

process, i.e., start from a small net, having a single hidden layer, and let it grow as

needed in both number of layers and number of neurons per layer. The advantage in

such an approach is that we do not force any of our notions about data representation
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on the NNet. In other words, we do not impose constraints which might not be
advantageous. For example, it may turn out that a single-hidden-layer NNet can learn

a valid data transformation and compression, where we would be otherwise tempted to

divide these tasks between two hidden layers. The problem with such an approach is

that, to convince ourselves, we are still very curious (and rightfully so) to understand

the physical interpretation of whatever internal representation the NNet did find, and

that might turn out to be a difficult task.

4.3 Data Preparation

The third main subject is concerned with the preparation of the training/testing samples

and the method of training. These are discussed under the following items.

1. Number of training samples

The first question to ask is how many samples do we need for training. Considering

that the dimensionality of the input space is nominally 27, and we use, say, 256 discrete

gray-levels, then the potential number of valid data points is 2562_ (which is more than

the number of electrons in the known universe). It is thus clear that we can only

afford to sample the input space in a very sparse way--to say the least. A somewhat

different approach is to ask what is the total information content conveyed by a single

sample--since we know that every sample by itself contains the divergence information

in it. The information content of a sample is the number of bits required to specify it,

that is,

I = 271og 2 256 = 216 bits (6)

which is not such a large number. This kind of argument means that, if we only knew

how, we could have taught the NNet all it needs to learn based on just a single sample.

The above considerations may help in developing some intuitive guidelines regarding

the necessary number of training samples, but do not necessarily lead to any rigorous

method of estimating this number. It at least says that, in principle, a very sparse

sampling should suffice in conveying the essential information. In practice, I intend to

experiment in order to develop that intuition--and, hopefully, also gain some additional

unexpected insights.

2. Specifying the samples

The samples to be used must be specified by the following items:

(a) Field of view.

(b) Image-plane velocities (affected by the FOV). These velocities must be small

enough so that the same general area will appear in the 3 x 3 pixels window

during the three frames that constitute the input data.
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(c) Scaling of TTC in terms of Frames-to-C011ision.This seemsto be an effective
normalized measurebecauseit combinesthe actual vehicle'svelocity, the depth,
and the inter-frame time.

(d) Power-spectrumof texture, or graininess. The texture for simulation should be
chosensuch that it is small compared to the 3 × 3 pixels, or any other chosen
window. Again, this texture is normalized. In practice,onecanalwaysreducethe
actual image-planetexture to the chosennormalizedtexture by pre-averagingthe
image-planepixels as necessary. For example, if the actual texture has a typical

spatial frequency of one cycle per 10 pixels, one would average every 10 x 10 image-

plane pixel to produce a single effective pixel; these spatially "scaled" pixels will

serve as inputs to the NNet.

3. Scenario simulation for generation of NNet training samples

We initially intended to train the NNet with real imagery. There were, however, several

reasons why that proved to be intractable. First, the imagery we have does not come

with complete ground-truth ranges, so that points to where interesting as-textured

features usually lacked range information. Second, even if some good samples do exist

in that imagery, their number and generality are inadequate for training an NNet.

Third, with a given imagery set, one has only little control on the parameters of interest

such as texture fineness, dynamic range of the gray-levels, distance from the FOE, and

others. Therefore, a scenario simulation has been developed to generate the required

samples as specified above. The scenario consists of a vehicle (helicopter) flying on

any pre-chosen trajectory (including maneuvers) and imaging a slanted vertical wall.

The wall is slanted by any desired angle (in the range 0 to 90 °) with respect to the

LOS So that its left side is closer to the vehicle than its right side. The wail is painted

with texture which is generated by filtering white Gaussian noise through a prescribed

Gaussian-shaped PSF. There are a few points of interest regarding this simulation.

The first problem encountered was that the far side (right) of the wall looked darker

than the close side. Since, in reality, one would expect a wall like that to appear

uniformly illuminated, this artifact was corrected to obtain uniform gray levels on

the image plane. Another artifact was that the image-plane projection of the sim-

ulated slanted uniformly-textured wall exhibited a non-uniform texture--its fineness

was proportional to the depth. This phenomenon raised the question of what would be

expected from a natural scene. Using the analogy of fractals, I argue that the natural-

scene texture (as defined by any texture measures) should nominally be independent

of depth--trees at a large distance would, in principle, present as fine a texture as

the leaves of a single tree at a very close range. Thus, the expected texture in the

image plane is nominally constant; the simulation was adjusted accordingly. Figure 7

shows a sequence of three frames resulting from the simulation, of a straight and level

flight towards the center of a 45°-slanted wall. The distances to the wall are 150, 125,

and 100 m. The left side' of the wall is closer than the right side, which explains why
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Figure 7. Three consecutive frames of the simulated textured wall.
16



its projection is wider on the left. The texture equalization in these figures has been

turned off to better convey the sense Of perspective.

Using a sequence like that, the wall is systematically sampled every other pixel in both

directions. The 3 x 3 x 3 spatial-temporal window around each such pixel constitutes a

single NNet sample. The known frames-to-collision for the pixel serves as the reference

associated with that sample for training the NNet.

4. Specifying the training procedure

Once we have produced a data set containing, say, 10,000 samples, there are a few

alternatives available concerning the training procedure. The first question has to do

with the order of sample presentation to the NNet. We first randomize the order of

the samples in the data set so that they will not appear to be in any geometrically-

related order (since the wall is scanned by rows). The data set is then divided into

two distinct parts: one for training and one for testing, say half and half. Training can

either be done by running the training set in the same order cyclically as many times as

necessary for error convergence, or picking up samples at random from the training set

until convergence is achieved. We noticed that the second method produces a "noisy"

error curve resembling the behavior of simulated-annealing learning. This is why we

prefer to use this method; it is less likely to get stuck in a local minimum.

Another subject of consideration is whether to train a multi-hidden-layer network as

a single NNet or train each hidden layer separately. As pointed out earlier, separate

training can only be performed when each layer is assigned with a physically inter-

pretable task. For example, if a hidden layer is expected to perform data compression,

it is trained to do just that.

An additional question is whether to train the NNet in increasing stages of difficulty

or mix up all cases irrespective of difficulty. Cases of points which are very close to the

FOE should be considered easy because the lateral translation would be very small.

The same is true regarding the vehicle's maneuvers. Easy cases would be those derived

from a rectilinear flight path. Intuitively, one would expect the easy-to-difficult learning

approach to have higher chances of converging into the absolute error's minimum as

opposed to falling into some local minimum; this is why we chose to use this approach.

5. Specifying the testing procedure

Testing is relatively simple. The trained NNet is presented with a few thousand samples

that it has not seen before in the training phase. The requirement is that the average

error on this set falls in the same order of magnitude as the average error obtained on

the training set.
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4.4 Integrating the Local and Global Divergence Methods

My goal is to use the local and global divergence methods to complement each other. In

textured areas the local divergence should take the lead whereas in structured areas the

global divergence should lead. There are several conceivable ways of combining the two

algorithms. The simplest way is to run both of them in parallel,and switch in the result

which ismore robust--to be determined by some measure which has not yet been developed.

A more desirableapproach isto integratethe two methods at some earlierstage so that the

switching between them willtake place in a more natural way. At the moment I willleave

this problem open because itmight turn out to be more involved than just integratingthe

two divergence methods. As I have pointed out earlier,these two methods are potentially

advantageous in the image area around the FOE. Thus integrationshould actually be done

on a larger scale,that is,it should include the two divergence methods along with other

methods which are advantageous in areas far from the FOE.

5 CONCLUDING REMARKS

In this paper I presented my current views and approach to monocular depth derivation.

In particular,two divergence-based depth estimation methods were suggested (localand

global) as promising to be effectivein the image area close to the FOE. A general feed-

forward multilayer neural network was suggested for the realizationof this approach. In

addition to relevant background and some basic theory, I described the parts of the work

which have already been completed as well as my overallplans for the future work.
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